Koji Terashi Rockefeller University October 28th, 2004

Forward Detectors in CDF II Part-II

- Beam Shower Counters
- MiniPlug Calorimeters

Outline

Introduction

Beam Shower Counters

- > Design, Electronics, Signals
- Rapidity Gap Triggers
- Beam Loss Measurements

MiniPlug Calorimeters

- Design, Electronics, Signals
- Energy Calibration
- Position and Energy Measurements

Detecting Charged Particles

Mean rate of energy loss (Bethe-Bloch formula)

$$-\left\langle \frac{dE}{dx} \right\rangle = Kq^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2 m_e c^2 \gamma^2 \beta^2}{I^2} T_{max} - \beta^2 - \frac{\delta}{2} \right]$$

PDG 2004

- works only for heavy particles
- $\rightarrow dE/dx$ in unit of MeV/(g/cm²)
- \succ function only of β in a given material

similar dE/dx for particles with same β in different materials

Minimum Ionizing Particles (MIPs)

Scintillators

Organic Scintillator

- > excite molecules
- emit UV photons

Fluor

- absorb y's and re-emit at a longer wavelength
 (→ wavelength shifting)
- shorten decay time

Scintillator	density (g/cm³)	-	λ _{max} (nm)	pulse height (%anthracene)
anthracene	1.25	30-32	448	100
BC-404	1.032	1.8	408	68
BC-517L (MiniPlug)	~ 1.0	2.0	425	30-39
SCSN-81 (BSC)	1.032	2.4	437	55-60

Scintillators

Plastic Scintillator

- $-dE/dx|_{min} \approx 1.95 \text{ MeV/g/cm}^2$
- density $\simeq 1.0 \text{ g/cm}^3$
- ➤ Energy Loss ≈ 2 MeV/cm
- > typ. photon yields: ~1/100 eV
- \rightarrow ~2x10⁴ photons /cm

Light Guide Scintillator

PMT

Actual photons (or photo-electrons) that we detect depend on

- \checkmark collection efficiency (~10%) → ~2x10³ photons
- ✓ quantum efficiency
 of photo-cathode (~10%) → ~2x10² pe

- > large fluctuations for thin (low density) material
- > $w \sim \pm 25\%$ of pulse height, independently of x

Scintillator Readout

Light Guide (Lucite):

- Transfer by total internal reflection (+ outer reflector)
- > Used in BSC : adiabatic

Optical Fiber:

- transfer by total internal reflection
- Used in MiniPlug : multi-clad WLS fiber

Photo Multiplier Tube

Convert photons to detectable electric signal

- *photoelectric effect* at photo cathode
- secondary emission from dynodes
- total gain (Πg_{dynode}): typically 10^6

Window:

- borosilicate glass (not UV) → BSC
- UV glass
- fused quartz (λ >160 nm) \rightarrow MiniPlug

Photo cathode:

- bialkali (Sb-K₂-Cs)
- multialkali (Sb-Na₂-K-Cs)
- Quantum Efficiency Q.E. = $N_{p.e.}/N_{photons}$ typically 10-20 %

Beam Shower Counters

Pbar side: 4 BSC Stations
P side: 3 BSC Stations

 $5.5 < |\eta| < 7.5$

BSC-1 Design

- > 6.4mm thick SCSN-81
- > 1 scintillator + PMT per 90° segment
- > used to measure collision rates and losses
- \triangleright lead plates attached in front to convert γ 's
- > scinti. + light guides remade and installed during March shutdown

BSC-2/3/4 Design

Light Guide Scintillator **BEAM PIPE**

- > 9.0mm thick SCSN-81
- > 1 scintillator + PMT per side
- > used as veto to trigger on gaps
- > scinti. + light guides remade and installed during this shutdown

Readout Electronics

18 PMT signals delivered to 2 ADC/Memory Modules (ADMEM) in CLC_00 VME crate on the first floor

3 RP trigger counter PMT signals also sent to one of the ADMEMs

Digitized Signal

Minimum ionizing particle peak well approximated by Landau distribution

- large fluctuations for thin (low density) material
- > Actual energy loss (Δ_p/x) in a detector is smaller than mean energy loss from Bethe-Bloch formula (e.g, <70% in Si)

Rapidity Gap Trigger

Require BSC veto (gap)

- reject ≥95% of nondiffractive events
- > retain \geq 95% of diffractive events with ξ <0.1

One-side gap

→ Single Diffraction

Double-side gap

→ Double Pomeron Exchange

BSC gap rates

Beam Loss Measurements

Beam Loss Measurements

Send total and bunch-by-bunch losses to Accelerator Division (since beginning of Run II)

ACNET

LOSTP COSTPB

- fast feedback (<1 Hz)

- total losses only

B0PLOS B0ALOS

- slow feedback (~7 Hz)

both total and bunchby-bunch losses

Beam Loss Measurements

MiniPlug Calorimeters

LIQUID SCINTILLATOR

MiniPlug Calorimeters

MiniPlug Design

Electromagnetic calorimeter with hadron detection capability

"Boundary-less" Structure

- > A "hexagon" holds 6 WLS fibers
- 3 hexagons form a readout unit ("tower")
- > 84 towers and 18 last dynodes ("sum-towers") per detector

Electromagnetic Showers

Simple Model at High Energy

bremsstrahlung and pair creation only

$$Y X_0 = \lambda_{\text{pair}}$$

Shower process continues until $E(t) < E_c$ (critical energy)

$$N^{total} = \sum_{t=0}^{t_{max}} 2^t \approx 2 \frac{E_0}{E_c}$$

Longitudinal shower development

> shower maximum : $t_{max} = \ln \left(\frac{E_0}{E_c} \right) \frac{1}{\ln 2}$ > 95% containment : $t_{95\%} \approx t_{max} + 0.08Z + 9.6$

Transverse shower development

95% containment in a cylinder with radius R_м (Molière radius)

$$R_{M} = \frac{21 MeV}{E_{c}} X_{0} \quad [g/cm^{2}]$$

$$E_0$$
=100 GeV electron into MP (=32 X_0)

 $t_{max} \approx 14X_0$, $t_{95\%} \approx 30X_0$, $R_M \approx 1.6$ cm

Electromagnetic Showers in MiniPlug

100 GeV electron shower

Beam Pipe

Transverse size of shower ≈ size of a hexagon >95% energy of (e, γ) with up to 500-1000 GeV absorbed

Hadronic Showers

Longitudinal shower development

- > shower maximum : $t_{max} \approx 0.2 \ln(E) + 0.7$
- **>** 95% containment : $t_{95\%} \approx a \ln(E) + b$ a = 9.4, b = 39(Fe)

Transverse shower development 95% containment in a cylinder

with radius λ_i

$$\lambda_I = \frac{A}{N_A \sigma_{total}} \approx 35 A^{1/3} \quad [g/cm^2]$$

- ✓ Inelastic nuclear interactions
- ✓ various processed involved

large energy fluctuations

 \rightarrow MiniPlug : E_{τ} resolution ~ 40 %

$$E_o$$
=100 GeV π^{\pm} into MP (=1.3 λ_i)
$$\lambda_i$$
(Pb)=17cm, $t_{max} \approx 1.6 \lambda_i$, $t_{95\%} \approx 5 \lambda_i$

size in MiniPlug

Hadronic Showers in MiniPlug

Energy resolution for hadronic shower is about 40%

Good position resolution is retained by detecting hadrons before they make (big) showers

Energy and Position Measurements

MiniPlug prototype (28 X_0 , 1 λ ,)

Positron position resolution

Positron energy resolution

Pion position resolution

Readout Electronics

2x84 "tower" and 2x18 "sum-tower" signals delivered to 12 ADMEMs in FCAL_00 and 01 VME crates in the collision hall

"sum-tower" signals will be used for the trigger

Digitized Signal

Energy Calibration Using MC Simulation

Monte Carlo based calibration (cross-check with data)

MBR (Minimum Bias Rockefeller) developed to generate

- elastic scattering,
- single and double diffraction,
- hard core events tuned to simulate charged and total multiplicity, $p_{\scriptscriptstyle T}$ and η distributions

Approximate MiniPlug detector simulation:

 $\pi^{\scriptscriptstyle 0}$: all energy is deposited

 π^{\pm} : 70% of time, taken from Gaussian $\mu = E(\pi^{\pm})/3$, $\sigma = \mu/2$ 30% of time, taken from Landau (peak=0.5 GeV, width=0.125 GeV)

→ Energy deposited in MiniPlug

 $\simeq 40-50\%$ of true particle energy on average

Energy Calibration: Data vs Simulation

Step 0: particle deposit energy in simulation

 $E_{particle-deposited}$ (simulation) Fit to $exp[-A_{particle-deposited}(sim) \times E]$

Step 1: minimize tower-by-tower variation

ADC_{tower} (data)
$$\rightarrow$$
 Fit to $exp[-A_{tower}(data)X]$

$$C = A_{tower}(data) / A_{particle-deposited}(sim)$$

$$E_{tower}(data) = ADC_{tower}(data) \times C$$

Step 2: data-MC comparison

Energy Calibration Using Dijet Balance

Cross-check with dijet balance

 E_{τ} balance between central jet and "MiniPlug jet"

- > only one central jet: $(E_7 > 5 \text{ GeV}, 0.1 < |\eta| < 0.7)$
- > no jets in Plug

 $\Delta \phi \approx \pi \rightarrow \text{second jet in MiniPlug}$

$$\beta = E_T(MP \text{ Jet}) / E_T(Central \text{ Jet})$$

= 0.4 ± 0.1

consistent with approximate detector simulation

Summary

Coverage

- Rapidity Gaps
- Forward Particles/Jets

Resolution

- Segmentation
- Longitudinal Depth

Environment

- Radiation
- Space Limitation

- **→** BSC : 5.5< $|\eta|$ < 7.5
- **→** MiniPlug : 3.7< $|\eta|$ < 5.2
 - Cover from edge of Plug down to the beam pipe
- MiniPlug designed to have good position resolution for hadrons (as well as e/y)
- → Adopt radiation hard technology studied at SSC/LHC environment
- → Replace damaged BSC counters as necessary
- → Best use of limited space!

ADMEM

- Digitize wide dynamic range of charge signals to a specified precision
- "Deadtime-less" operation at every bunch crossing (132 ns)

QIE (Charge Integrator and Encoder)

- divide signal into multiple ranges
- integrate fractional charge in each range
- linearize charges in FRAM look-up table

Pipeline/L2 Buffer:

- Store digitized data in pipeline
- Move data to L2 buffers with L1 trigger accept

Trigger Sum:

- provide signal sums to trigger

Luminosity from BSC-1

E*W Coincidence Rate $R_{E*W}[Hz] = L_{inst} [Hz/mb] \bullet \sigma [mb] \bullet \epsilon$

L_{inst}: Instantaneous luminosity

 σ : *pp* total cross section

 ϵ : BSC-1 acceptance

 $\sigma \cdot \epsilon = 25.6 \text{ mb}$ PRD 50, 5550 (1994)

BSC-1 measured luminosity is close (within 10 %) to CLC luminosity

Need more studies on acceptance

Calorimetry Basics

Energy measurement by total absorption

Formation of electromagnetic, or hadronic showers

Works for both

- charged (e[±], hadrons) and
- \succ neutral (n, γ) particles

Charged particle interactions:

- ✓ ionization
- ✓ bremsstrahlung

$$p + atom \rightarrow p + atom^+ + e^-$$

 $e (+ nucleus) \rightarrow e + \gamma$

Photon interactions:

- \checkmark photo-electric effect γ+atom→atom⁺+e⁻
- \checkmark Compton scattering γ+e→γ'+e'
- pair creation

$$\gamma \ (+ \ nucleus) \rightarrow e^+ e^-$$

 $(+ \ nucleus)$

At high energy, bremsstrahlung and pair creation are dominant